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Abstract

A systematic procedure is developed for the design of adaptive regulation
and tracking schemes for a class of feedback linearizable nonlinear systems. The
coordinate-free geometric conditions, which characterize this class of systems, nei-
ther restrict the location of the unknown parameters, nor constrain the growth
of the nonlinearities. Instead, they require that the nonlinear system be trans-
formable into the so-called pure-feedback form. When this form is “strict”, the
proposed scheme guarantees global regulation and tracking properties. This re-
sult substantially enlarges the class of nonlinear systems for which global stabi-
lization can be achieved. Apart from the geometric conditions, this paper uscs
simple analytical tools, familiar to most control engineers.
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1 Introduction

Most of the research activity on adaptive control of nonlinear systems [1-15] is still focused
on the full-state feedback case [1-13], although output-feedback results are beginning to
appear [14,15]. The full-state feedback case continues to be a challenge because of the severe
restrictions of the two currently available types of schemes: the uncertainty-constrained
schemes [1,2,3,4,10,11] restrict the location of unknown parameters, and the nonlinearity-
constrained schemes [5,6,7,8,9,12] impose restrictions on the type of nonlinearitics.

The systems to which uncertainty-constrained schemes can be applied may contain all
types of smooth nonlinearities and are fully characterized by coordinate-free geometric condi-
tions [2,3,11], which, unfortunately, are quite restrictive. On the other hand, the applicability
of nonlinearity-constrained schemes is restricted by coordinate-dependent growth conditions
on the nonlinearities, which may exclude even certain linear systems {13]. The nounlinearity-
constrained schemes based on the “Control Lyapunov Function” approach [6,7,8], are ap-
plicable to the class of systems for which a Lyapunov function with prespecified growth
properties is known. Unfortunately, the existence of such a Lyapunov function can not be
ascertained a priort.

The new adaptive control scheme developed in this paper combines the main advantages
of earlier schemes without most of their disadvantages. It significantly extends the class of
nonlinear systems for which adaptive controllers can be systematically designed. At each step
of the new design procedure, the change of coordinates is interlaced with the construction of
a parameter update law. The main idea of this nonlinear procedure evolved from an early
linear result of Feuer and Morse [16].

Among the advantages of the new scheme are its conceptual clarity and wide applicability.
Its stability proof, based on a straightforward Lyapunov argument, is particularly simple.
The coordinate-free geometric conditions, characterizing the class of systems to which the
new scheme s applicable, neither restrict the location of the unknown parameters. nor con-
strain the growth of the noulincaritios. Tostead, tney require that the nondiicar system be

transformable into the so-called pure-feedback form. Furthermore, in the case of svstems




transformable into the more restrictive strict-feedback form, the new adaptive scheme guar-
antees global regulation and tracking properties. This is now the broadest class of nonlinear
systems for which an adaptive control scheme can be systematically designed to achieve
global regulation or tracking without growth constraints.

The presentation is organized as follows: First, we address the regulation problem. In
Section 2 we characterize the class of single-input nonlinear systems to which the new scheme
is applicable. The design procedure is presented in Section 3, and the simple proof of stability
is given in Section 4. In Section 5 we give the conditions under which the stability of the
closed-loop system is global. The design procedure is extended to multi-input systems in
Section 6. Then, in Section 7, we use the design procedure to solve the tracking problem
for a class of input-output linearizable systems with exponentially stable zero dynamics.
In Section 8 we illustrate this procedure on some “benchmark” examples, and discuss its
properties in comparison with previous results. Finally, some concluding remarks are given
in Section 9. The reader unfamiliar with differential geometric results for nonlinecar systems

can follow the presentation starting with Section 3 and then omitting Propositions 5.3. 6.1

and 7.3.

2 The Class of Nonlinear Systems

The adaptive regulation problem will first be solved for single-input feedback linearizable

systems that are linear in the unknown parameters:
. p P
¢ = folQ)+ D 6:£:(¢) + [QO(C)'{"ZO:'Q{(C)] U, (2.1)
i=1 1=1

where ¢ € IR™ is the state, u € IR is the input, § = [0;,...,6,]T is the vector of constant
unknown parameters, and f;, ¢;, 0 < ¢ < p, are smooth vector fields in a neighborhood of
the origin ( = 0 with f;(0) =0,0 <: < p, ¢(0) #0.

The design of the adaptive scheme assumes that the system (2.1) can be transformed
into the pure-feedback form via a parameter-independent diffeomorphism. Necessary and
sufficient conditivus for the existence of such a diffeomorphism are given i the 1ollowing

proposition.
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Proposition 2.1. Consider a parameter-independent diffeomorphism z = ¢((), with ¢(0) =
0, that transforms, in a neighborhood B, of the origin, the system (2.1) into the so-called

pure-feedback form

5 = 32+9T‘71(21,Z2)
Z = 23+HT’72(21,22,23)
(2.2)
én—l = Zn+9T7n—l(zly--~azn)
Go= o(2) + 0T 9(2) + [Bol2) + 07 B(2)] u,
with
%(0)=0,0<i<n, fo(0) #0. (23)

Such a diffeomorphism exists if and only if the following conditions are satisfied in a neigl-

borhood U of the origin:
(i) Feedback linearization condition. The distributions
G =span{go,adjogo,...,ad}ogo}, 0<i:<n—-1 (2.4)
are involutive and of constant rank 1 + 1.

(i1) Pure-feedback condition.

g9i € gO’
1< <p. (2.

o
(@1
~—

[X,f] € ¢, VXeg', 0<j<n-2,

Proof. Sufficiency. As proved in [17], condition (i) is sufficient for the existence of a

diffeomorphism 2 = ¢({) that transforms the system

¢ = fo(¢) + 90(¢)u, fo(0) =0, go(0) #0 (2.6)
into the system
5 o= zip,1<i<n-1
o= v(2) + Bo(2)u, (2.7)
5




with
Y0(0) =0, Bo(0) #0. (2.3)

Hence, in the coordinates of (2.7) we have

fo8712) = [22 - 2av0(2)] (2.9)
go(¢71(2)) = [0...08(2)]" (2.10)
G = span{azn,...,aj_i}, 0<:i<n-1. (2.11)

Because of (2.11), the pure-feedback condition (2.5), expressed in the z-coardinates, states

that

€ span 9
gi = (:
g p Dz

1< <p. (2.12)
d d d
— fi C2<ji<n,
) < el i) e
But (2.12) can be equivalently rewritten as
(=)
0
. .1/2(21522)
gi(¢7'(2)) = R file™'(2)) = : . 1<i<p.  (2.13)
. 771—1,;'(21»---7371)
,Bt(Z) 7n.i(zlv'- -7zn)

Furthermore, since ¢(0) = 0 and f;(0) = 0,1 <1 < p, we conlude from (2.13) that
7;(0)=0,1<; <n. (2.14)

Combining (2.9), (2.10), (2.13) and (2.14), we see that in the z-coordinates the system (2.1)
becomes (2.2).

Necessity. If there exists a diffeomorphism z = ¢(({) that transforms (2.1) into (2.2}, one
can directly verify that the coordinate-free conditions (i) and (ii) are satisfied for the system

(2.2), and hence for the system (2.1). =

Remark 2.2. The “extended-matching” condition, introduced in [2,3] and used in [1] in
the equivalent form of a “strong linearizability” condition, is a special case of the “pure-

feedback” condition (2.5). This is easily scen by noting that if the system (2.1) satisties the

6




feedback linearization condition (2.4) and the extended-matching condition
9 €6°, fieg, 1<:<p, (2.15)

then it is transformable into the pure-feedback form (2.2) with v, =0,...,v,_, = 0. ]

3 Adaptive Scheme Design

The conditions of Proposition 2.1 give a precise geometric characterization of the class of
nonlinear systems to which the new adaptive scheme is applicable. We now design the new

adaptive scheme for systems of the form (2.2):

é,‘ = Z,'+1+0T7i(21a---’zi+1)7 1SZSTI-1
(3.1)
tno= 20(2) + 0T7a(2) + [Bo(2) + 0TB(2)] u,
with
%(0)=0,0<i<n,[3(0)#0. (3.2)

Recall that 0 is the vector of unknown parameters, and 4, 5o, and the components of 3 and
¥, 1 €1 < n, are smooth nonlinear functions in B,, a neighborhood of the origin = =
Using an idea similar to those exploited by Feuer and Morse [16] for adaptive control of
linear systems, the design procedure interlaces, at each step, a change of coordinates with
the construction of a parameter update law. Not only is the design procedure systematic
and conceptually clear, but also the stability proof is a straightforward Lyapunov argument.

The new adaptive scheme for the system (3.1) is designed step-by-step as follows:
Step 0. Define z, = z1, and denote by ¢y, ¢y, ..., ¢, constant coefficients to be chosen later.

Step 1. Starting with

I =224+ 0 (2, 22), (3.3)

let 7, be an estimate of # and define the new state x, as

T =T + 2+ 9] N2, ) . (3.4)




|

Substitute (3.4) into (3.1) to obtain

o= —cxy+ o+ (0 =0) (5, 0)

= —C1 Iy + l'2+(0—l)l)TlUl(Il,IQ,])l). (‘:))
Then, let the update law for the parameter estimate J; be

191 = rywy (I, rp, ). (3.6

Step 2. Using the defimtions for xy, ry and ¥y, write I, as

I = cof-qry+r+ (0~ Ul)TlL’x(Ix»ld D)) + 2y + ()T‘:'z(:h 9. 23)
+rywy (2 2, ) (5 2) + 0] l()“( 240"+ i—.)~—1(:3 + ()l‘u)}

ron » -
= <1‘+‘ )1 ) ) [:3+0T‘)‘2(:1,:‘2q:3)} +\,7'2(J'1,I'2.1}1)+()1 1.‘3(.1'1.,1‘_1.1)1).\15.1)
%2
Let Y5 be a new estimate of 0 and define the new state z3 as

0
I3 = Coxg+ (1 + 1)1T—071> {:3 + U;,rw,g(:l. 24, :3)]
2 ’

+a(ay, o, Uy) + UG (. 20.00,) (3.8)

Substitute (3.8) into {3.7) to obtain

.7.:2 = —C3ry+ Iy
In(z1.22)
0_ 2)T I: (*rlv‘r271)l)+ ( )T~l(l—2> /2(31.3_).33)}
dzg
= —zy + 23+ (0 — V2)Twa(xy, 22, 13,9y, 04) . . (3.9)
Then, let the update law for the new estimate v, be
Uy = 1, wo(xy, g, 23,0, U2) . (3.10)

Stepi(2<i<n-—1) Using the definitions for ry,...,r; and Ji.. . .,t),_,. express the

derivative of x; as
vy ()7 .
. T 1 1—1
o= (l + 1, ()~z> . ( z):r 1 ,)” [:,-+1 + 0r-y,-(:|, cee Ziel)
+o Ty, TP, Yi) ()Tz,f‘;(.rl, U O SN R (3.11)

3




Let ¥, be a new estimate of § and define the new state z,,, as

a 0;_
Iiyy = I, 1 I-i-l9,T—-l = 1+17,-T_1 il [Z.'+1+19?‘Yi(31~,---~51+x)}
dz, dz Jt
+£,9,'(JJ1,...,I,’,l)l,..,,lji_l)+19;I‘T,L','($l,...,Ii,lgl,...,'l),'_l)A (3.12)

Substitute (3.12) into (3.11) to obtain

: o1
i'x = —Ci[I; +-l',+1 +(0—0‘)T w,_*_ 1 +0’lr_’ﬁ el 1 +0;r—lL ~,
Oz, dz,
= —CI.L',+I|+1+(0-Oj)TlU,'(l'l,...,l',‘.,}.],lg],...,'l)i)- (31})

Then. let the update law for ¥, be

1),‘-’ l‘ilvi(lil,...,l‘,+l,01,...,191'). (311)

Step n. Using the definitions for z4,...,z, and 9y,...,7,_;, express the derivative of

as

i, = <1 + 0?%:’—;) <1 + 03_,83’1“) [Bo(z) + 073()]

+k’9n(x,1’1,...,0n_1)+0Tl}i~’n(l',l)1 ..... l)n-l)' (;13)

Let ¥, be a new estimate of 8 and define the control u as

1

— _ T .
U = ’3(:’01,“"071) [ Chl, $n l)nl‘n] . (-316)
where
- 0 0 i ’
Bzt = (140752 ) (10T, =22 ) [y + 0T 3:)] - (3
()22 0Zn

Substitute (3.16) into (3.13) to obtain

—eprn + (0 =) [r,"',l + (1 + 17T211-) (1 + 19I_1d7i—1> 3(:)11}

I,

! 032
= —coon+ (0 =0 )T wn(r. 0y, 0,), (3.18)

where (3.16) 1s used in the definition of w,,. Finally, let the update law for the ¢ qamate

i), be

1),. =anwu(r, Yy, .. 00,). {3.19)
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The above steps complete the formal developinent of the new design procedure.  Its
feasibility and the stability of the resulting closed-loop system are analvzed in the next

section.

4 Feasibility and Stability
The above design procedure has introduced a set of new coordinates z,....r, defined by

Xy = )

9, 0vi-
iyl = (1 + UTl) <1 +0T i 1) [:t+l + 0?71(315'- . ,Z,+1)] + €T, (11)

9z, =gz,
; .T T .
+oiz TV i) F 900 (2T Uy 0 ) L <0 <n =

In order to ensure that the procedure is feasible, we construct in Proposition 1.1 an estimate
F C IR of the feasibility reqion such that for all (z,9q,...,7,) € F the coordinate
change (-1.1) is one-to-one, onto, continous and has a contiruous inverse, and the denominator
in (:3.16) 1s nonzero.

Proposition 4.1. Let B, be defined as in Proposition 2.1 and By C IR? be an open set

such that

'()1'2 .

‘1+0'T87~() > 0,Vze B, W, €By, 1<:i1<n~-1 (4.2)
Zitl

ldﬂ:)4—03ﬁ(ﬂ > 0,V:€B., W, cBy. (4.3)

Then, the set F = B, x B} is a subset of the feasibility region.

Proof. Obvious, since (4.2) and (4.3) guarantee that in B, x B} (4.1) is uniquely solvable

for = and the denominator in (3.16) is nonzero. a

Remark 4.2. The nonglobal nature of the feusibility region is not due to the adaptive
scheme, because, even when the parameters 0 are known, the feedback lincarization of

system (3.1) can only be guaranteed for # € By, with By C P an open set such that

) = ,
'l+()T£(,—-’~(—) 0.V-e B,,V0e Bg, 1<i1<n-1 (-1.1)
~141
1mm+mmﬂ]>o,we&,wem. (1.5)
10




In the feasibility region, the adaptive system resulting from the design procedure can be

expressed in the z-coordinates as

I = - +12+(0—01)Tw1($1,$2,01)

i'n_x = "Cn,-ll'n_l+$n+(0—'l?n_l)Twn_](.'Cl,...‘l'n,?}l,....l)n_l) (16)
Iy, = —Cnrn+(0_ﬂn)’rwn(l',ﬂl,...,l)n)
J, = z;wi(r,d....,0), 1<i<n.

The stability properties of this system are now established using the quadratic Lyapunov

function
L 1 1 & , -
Viz, V..., 0n) = 5:&- +35 ;(0 — )% (0 -0,). (1.7)
The derivative of V(z,V,.....Y,) along the solutions of (4.6) is
n n-1
V = —~Z [C,‘I? + (0 - 19,~)T(1:,~w,» — ‘0,)} + ZI,‘l‘i_H
1=1 i=1

(4.8)

n n-1

- 2

= *ZC,‘Ii + ZII,‘I,‘+1 .
i=1 =1

At this point we can choose the coefficients ¢y, ..., c, that were left free in the design proce-

dure. The choice ¢, > 2, for all t = 1,...,n, guarantees that Vis negative semidefinite:
V< —|z?. (4.9)
This proves the uniform stability of the equilibrium
r=0,9,=0,1<i<n (4.10)

of the adaptive system (4.6). To give an estimate Q of the region of attraction of this
equilibrium. we note that 2 must be a subset of our estimate J of the feasibility :cgion. Let
() be the invariant set of (4.6) defined by {V < ¢}, and let ¢™ be the largest constant ¢
such that Q(¢) C F. Then, an estimate § of the regicn of attraction is

Q=Q(c") = {(x.),....0,): V(z,0y,...,9,) <"}, ¢ =arg sup {c}. (4.11)
Q) F

11




Remark 4.3. [t can be expected that the above estimate is not the tightest possible une,
because the choice of the unity gains in the update laws was made for simplicity. With some
a priori knowledge about the shape of F, different adaptation gains can be found so that )

i1s maxixized by a better fit of F. 0

Next, we use the invariance theorem of LaSalle to establish that for all initial conditions

(z,V1,...,Un)=0 € {1, the adaptive system (4.6) has the following regulation properties:

lim 2(t) = 0, Jlim #(t) =0, Jim Ji(t)=0,1<i<n. (4.12)

t—oo t—oo

In order to return to the original coordinates (, we note that, because of (4.2), the solution

29 = -+ = z, = 0 of the system of equations
st 0770, 20, .. 2i) =0, 1<i<n—1, (4.13)

is unique in B, x By, and that z;,;1 € 7 < n can be expressed as smooth functions of

z,¥;,1 <12 < n using (4.1). Combining these facts with (4.12), we obtain

lim z,(¢t) =0, tlirgloéi(t)zo, 1<:<n. (4.14)

t—oo

Using an induction argument, it is now shown that z;(t) - 0ast — 00,1 <i < n:
o For: =1, we have z;(t) = 0 as t — .

o For: =4 2<k<n, weassume that z;(¢) - 0ast — 00,1 <7<k —1. Then, from

(4.14) we have

Hm 2_,(t) = him {254 +0T7k_1(zl,...,zk_1.zk) =0, (4.15)
t—en0

t—o0
and from the uniqueness of solutions of (4.13) we conclude that z.(t) — 0 as t — oc.

Hence, z(t) — 0 as t — oo. Finally, since z = ¢(() is a diffeomorphism with o(0) = 0,

regulation is achieved in the original coordinates ¢, namely

lim ¢(t) = 0. (4.16)

t—no

The above facts prove the following result:




Theorem 4.4. When the design procedure of Section 3 is applied to a system of the form
(2.1) that satisfies conditions (i) and (ii) of Proposition 2.1, the resulting adaptive system
has a stable equilibrium at { =0, 9V, = 0,1 <1 < n, whose region of attraction includes the

set Q defined in (4.11). Furthermore, regulation of the state ((t) is achieved:

lim ¢(¢) = 0, (4.17)

t—oo

for all initial cond:tions in ). O

5 Global Stability

There are strong theoretical and practical reasons for investigating whether the stability
properties of an adaptive system can be made global in the space of the states and param-
eter estimates. Systems with a finite region of attraction may not possess a wide enough
robustness margin for disturbances, unmodeled dynamics, and other model imperfections.
Furthermore, for nonglobal results it is usually hard to find nonconservative verifiable esti-
mates of the region of attraction.

Another aspect of the global stability issue is the comparison of the proposed adaptive
controller with its deterministic counterpart, that is, the controller that would be used if the
parameter vector § were known. Suppose that for all values of § there exists a deterministic
controller that achieves global stabilization and regulation of the system. If, with § unknown,
the proposed adaptive controller does not achieve the same global stability, this loss is clearly
due to adaptation.

The stability result of Theorem 4.4 is not global, but, as pointed out in Remark 4.2, this
is not due to adaptation. For pure-feedback systems, global stability may not be achievable
even with § known. We now consider “strict-feedback” systems for which a globally stabiliz-
ing controller existsﬁ when 0 is known, and prove that our adaptive scheme guarantcees global
stability when 0 is unknown.

In order to characterize the class of “strict-feedback” systems, we use the following as-

sumption about the part of the system (2.1) that does not contain unknown parameters:

13
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Assumption 5.1. There exists a global diffeomorphism z = ¢((), with ¢(0) = 0, that

transforms the system

¢ = fo(¢) + go(¢)u (5.1)
into the svstem
L= Zp,1<1<n-1
o= l(z) + Bo(z)u. (3.2)
with
7(0) =0, Do(2) #0Vz € IR". (5.3)

Remark 5.2. The local existence of such a diffeomorphism is equivalent to the feedback
linearization condition (2.4). However, at present there are no necessary and sufficient con-
ditions that can verify the global validity of this assumption. Sufficient conditions for As-
sumption 5.1 are given in (18], while necessary and sufficient conditions for the case where

Bo(z) = const. can be found in [19,20]. o
Proposition 5.3. Under Assumption 5.1, the system (2.1) is globally diffeomorphically
equivalent to the “strict-feedback” system

4 = zZp 0 vz, ,m), 1<i<n—1

o= yo(2) + 0Ty (2) + Bo(2)u (5.4)
if and only if the following condition holds globally:

Strict-feedback condition.

gi = 0,
1 <2< p,

—
Ut
Ut

~—

[‘\,aﬁ] E gj» VAY EgJa 0_<_] Sn_Qa

with 7,0 < 7 <n -1, as defined in (2.4).

Proof. The proof is very similar to that of Proposition 2.1. First note that because of the

assumptions that the diffecomorphism = = ¢(() is global and that go(z) # 0 Vz € IR". the

14
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distributions G ,0 < j < n—1, are globally defined and can be expressed in the z-coordinates

as

G' =span{82n,---,a::_i}, 0<:<n-1. (5.6)

To prove the sufficiency part of the proposition, note that if the pure-feedback condition
(2.5) of Proposition 2.1 is replaced by the strict-feedback condition (5.5), then (2.12) and

(2.14) are replaced by

gi = Oa
P P 5 1<i<p (5.7)
—.,fi| € span{—,...,—?, 2<7<n,
{azj d } P {Ozn azj} 7
Thus. the expression for fi(¢~'(z)) in (2.13) becomes
Y1.:(21)
V2.4(21, 22)
file™(2)) = : , 1<i<p. (5.8)
771—1,1'(21’ ey zn-—l)
7n,i(zla ceey zn)
The necessity part is again straightforward. O

The above proposition gives a geometric characterization of the class of systems for which

the following global properties can be achieved.

Theorem 5.4. Under the conditions of Proposition 5.3 the stability and regulation results

of Theorem 4.4 become global, i.e., they are valid for any initial conditions in = R*(1+7),

Proof. When the adaptive design procedure (3.3)-(3.19) is applied to the system (5.4). then
for all ¥, € IR?, 1 <1 < n, the change of coordinates (4.1) is one-to-one, onto. continuous

and has a continuous inverse, and the control (3.16) is well defined, since

i n -
0~7 (2)=0, B(2)=0, Bolz)#0 Vze R (5.9)
Zip1
Hence (1.2)-(4.3) are trivially satisfied on F = B, x B} = R"*?) and from (1.11) we
conclude that = RM+P), 0
15




6 Multi-input Systems

The design procedure of Section 3 can be easily extended to multi-input nonlinecar systems

of the form

. P m P
¢ = folC)+ D _0: /() + [93(()'*‘29:'9;]‘(0} Uy, (6.1)
=1 J=1 1=1
with
fi(0)=0, 0<:<p, rankGo(0) =m, Go = [g5--- 93] (6.2)

that can be transformed into

o= z{+1 +0T‘yf (zll,...,z,ll_kﬁ?,...,zrl,...,z?m_k1+2) y <<k, —-1, 1 <)< m
. P 7
2= R+ (2) + [ﬁé(:)JrZOeﬂZ(z)J u, 1<j<m, (6.3)
=1
with
7(0)=0,0<2<k;, 1<j<m, detBo(0) #0, (6.-1)

where By = [3}, .. -,Bén]T, and 271:1 kj =n.

Proposition 6.1. There exists a parameter-independent diffeomorphism = = ¢o((), with
¢(0) = 0, valid in a neighborhood B, of the origin, that transforms the system (0.1) into
the system (6.3) if and only if the following conditions are satisfied in a neighborhood of the

origin:

(i) Feedback linearization condition. The distributions

G' = span{gj, adg,...,adyygh, 1S j<m}, 0<i<n-—1 (6.5)
are involutive and of constant rank r;, withr,_, = n.

(ii) Pure-feedback condition.
g € G° 1<j<m,

(X,f] € G ¥X€eGF 0<k<n=—2,

16




Proof. As proved in [21,22], condition (i) is necessary and sufficient for the existence of a

diffeomorphism z = ¢((¢) such that in the z-coordinates we have

fle (@) = [z ab@) L) (6.7)
God™'(2)) = [0...08(2) ...0...087(=)] (6.3)
G = span{ai,...,azi_i,lSjSm}, 0<i<n-1. (6.9)

It is now a tedious but straightforward task to verify that condition (ii) is equivalent to

T
gl(67(=)) = [0...080(2)...0...08(=)], 1<i<p, 1<j<m (6.10)
[ 7%.1(2%72’;,1 ’z{n’ ’ka—k|+'2) A
’7/1,,.‘(2)
file™H(=)) = : , 1<i<p. (6.11)

The design procedure for the system (6.3) is the following:
Steps 0 through (n —m): Apply steps 0 through (k; — 1) of the single-input procedure to

the first (k; — 1) equations of each of the m subsystems of (6.3), to obtain the system:

T o= —Cxle +-T{+1 +(0—178)wa($’191"--’19¢_1)» Cf >2,

-1
€= (k,—1)+i, 1<i<k;, 1<j<m
=1

U, = xfzv{(z,ﬁl,...,ﬂg), 1<l<n-m (6.12)
1
d T - L.
'E = BO(zaﬂl"'-’ﬂn-m)+ZBi(z7019"'!0n—m)0i u
a m =1
T

+®(z, )\, D) F W 0y 0,00,

17




where

B;‘(Z,ﬂl,...

5 197‘L—m) =

-

ad
nga'Yi) ( +9F

L (1+19n m-— km+la

671

87k, 1
dz},

) B(2)

av’znm—'l mTy¢.,
a2t g

) (o

Step n — m + 1: Let ¥,_,,;, be a new estimate of § and define the control u as

u =

—(D(.L',l’],.. .

Bl

71771

ZB(~ Iy,

nom) — WT(:c,ﬂl,...,

-1
1 _1
- ) n-— m+lx} {" [Ck,‘rkl

0n_m)ﬂn_m+1}, ch, 22, 1<j<m. (6.14)

Substitute (6.14) into (6.12) and rewrite the last m equations of (6.12) as

dt

where (6.14) was used in the definition of W, _,.,;.

Ty

e

v 1

m

estimate ¥, _,, 11 be

19n—m+l = l/Vn—mn{»l(:ra1917 cee

o1l
Ciy Tiy
1 m

1 .1

-

L CkoiTho

m m
L CkmThm |

+ {I/V+ [Blu...Bpu

+ W (2,0,

’ 1977.—~m+l)

1
Ikl

m
Ty,

]} (0 - 1g'n—mxf-l)

) lgn-—m-}-l)(o - Un—m+1) 3

(6.13)

m

cl\ m T ;\vﬂ}

(6.15)

Finally, let the update law for the

(6.16)

Note that this procedure will again be feasible only in a certain feasibility region. which
P

can be defined as the region in which the matrix B = By + ZBiﬂn-mHJ is invertible.

=1

The stability properties of the resulting closed-loop system are analogous to those listed in

Theorem 4.4, and can be similarly established using the Lyapuno ' function

Ve, 94, ...

1
a1)n—m+l) = _—)-1,'

1 n-m+1

Ty -

o

=1

18
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7 A Global Tracking Result

We now turn our attention to the tracking problem for a class of input-output linearizable
systems characterized by structural conditions analogous to those in Propositions 2.1 and 5.3.
Every regulation result in Sections 2-5 has its tracking counterpart. For brevity, we restrict
our presentation to the tracking version of the global regulation result in Section 5. The
counterparts of nonglobal regulation results can be obtained using the same Lyapunov func-
tion argument as in this section to determine an invariant set in which asymptotic tracking
is guaranteed.

Consider the nonlinear system

( = Zof ) + go({)u (7.1)
y = h((),

where ( € JR™ is the state, u € IR is the input, y € IR is the output, § = [0;,...,0,]T is the
vector of constant unknown parameters, h is a smooth function on R™ with A(0) = 0, and
the vector fields go, fi, 0 < ¢ < p, are smooth on IR* with ¢({) # 0,V¢ € R*, f;(0) = 0,

0 <7 < p. We first formulate the input-output counterpart of Assumption 5.1:

Assumption 7.1. There exist n — p smooth functions ¢;((}, p+ 1 < ¢ < n, such that the

change of coordinates
z1 = k()
<2 Lfoh(C)
<3 = L20 h(C)

z, = Lih(C)
zi = ¢i(C), p+1<i<n

is a global diffeomorphism z = ¢(() that transforms the system

( = Jo(¢) + go(¢)u
y = h(()

—_
-1
o

—

19




into the special normal form

o= 2

%-1 = % (7.4)
2, = 70(2) + Bo(z)u
&= Do(y,z)
y = &,
with

70(0) = L% h(0) =0, &(0,0) =0 (7.5)
Bo(z) = LgLf 'h(¢) #0Vz€ R*. (7.6)

Remark 7.2. In order for (7.3) to be locally equivalent to (7.4), it is necessary and sufficient

that the following conditions hold in a neighborhood of the origin { = 0:

LoLiyh = 0,0<:<p-2 (7.7)
L, L57'h(0) # 0 (7.8)
G' is involutive and of constant rank 1+ 1, 0<:t<p—~1. (7.9)

The sufficiency of these conditions is a consequence of Proposition 10 in [23]. The necessity
can be easily established by verifying that (7.7)-(7.9) hold in the coordinates of (7.4). How-
ever, at present there are no necessary and sufficient conditions that can verify the global
validity of this assumption. O

We are now ready to formulate the input-output counterpart of Proposition 5.3:

Proposition 7.3. Under Assumption 7.1, the system (7.1) is globally diffeomorphically

equivalent to the “strict-feedback” normal form

o= zig 0Tz, 2027), 1<i<p—1

5= 0(2) + 0T ,(2) + Bol2)u (7.10)
;o= ¢0(yazr)+§:0i¢i(yazr)

y = 2, -

if and only if the following condition holds globally:

20




Strict-feedback condition.

(X,fileg, VXeg, 0<j<p-2, 1<i<p, (7.11)
with G7,0 < 7 < p—1, as defined in (2.4).

Proof. The proof follows closely that of Proposition 5.3. First, because of the assumptions
that the diffeomorphism 2 = ¢(({) defined in (7.2) is global and that By(z) # 0 Vz € IR", the

distributions 7,0 < j < p—1, are globally defined and can be expressed in the z-coordinates

as
d 0
P 9 .9 <i<p—1. 12
g span{azp, ’0zp_,-}’ 0<:<p-1 (7.12)
The sufficiency follows from the fact that, by (7.11) and (7.12),
0 0 0
a1 J YRR IV ) QSS ) 1_<_§ . 7.1
[azj,f]espan{azp 0Zj} J<p i<p (7.13)
Thus, the expression for f;(¢~1(2)) is
71‘,'(21,21-)
72‘1'(213 22, zr)
filé7Y(=2)) = : , 1<i<p. (7.14)

'Yp—l,i(zla cee32p-1, zr)
Yoi( 21y -0y 25, 27)

®;(2y,2")

The necessity part is again straightforward. O

Remark 7.4. To obtain the input-output counterpart of Proposition 2.1, one just neceds to
replace condition (2.4) (feedback linearization condition) of Proposition 2.1 with conditions
(7.7)-(7.9) and condition (2.5) (pure-feedback condition) with

gi € go,
1 < <p. (7.

-1
—_
ot

[X./) € g%, VXeG, 0<j<p-2,
a

As in most tracking problems, we need an assumption about the stability of the zero-

dynamics of (7.10):

21




Assumption 7.5. The z"-subsystem of (7.10) has the bounded-input-bounded-state (B31BS)

property with respect to y as its input.

[t was shown in [9, Proposition 2.1] that the following conditions are sufficient for As-

sumption 7.5 to be satisfied:
(1) the zero dynamics of (7.1) are globally exponentially stable, and
P
(11) the vector field & = &4 + ZO‘&D, in (7.10) is globally Lipschitz in =.
1=1
However, they are too restrictive for our purposes. For example, the system 27 = (=)' + *
violates both these conditions, but is easily scen to satisfy Assumption 7.5. Ou the other
hand, for nonglobal results it is convenient to use the assumption of exponential stability of

the zero dynamics in order to estimate the region of attraction using a converse Lyapnnov

theoren.

The control objective is to force the output y of the system (7.1) to asymptotically track

a known reference signal y.(t), while keeping all the closed-loop signals bounded.

Assumption 7.6. The reference signal y.(t) and its first p derivatives are known and

bounded.

To achieve the asymptotic tracking objective, the design procedure presented in Section 3

is modified as follows:

Step 0. Define

Ty =2 — Yr- (7.1t

Step 1. Starting with

-1
-1

'il =:2+0T7l(219:r)-3)rw (

let 1) be an estimate of § and define the new state r, as

ary + o+ 9 ) = i

i

L2

= an + 22+0T101(Ih3r»yr) - Y, 0 22 (7.18)
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Substitute (7.18) into (7.17) to obtain
o=—ar + 2+ (0 - ) Tw (2, 25 5 -
Then, let the update law for the parameter estimate v; be

'01 = I wl(l‘l,:',y,) .

Step 2. Using the definitions for z,, x5 and v, write 1, as

, = col-qr,+r+(0- ﬂl)Twl(l'l» Syl s+ 9T‘72(31, 72, 2%)
a7l(zlvzr)
+xyw (g, Zr»;’/r)T’h(fl- =)+ l)lT [_0,_'

2y

+(?“/1(31a3r) (

3er
-~

4

do(z1,27) + Zoiq)i(-‘-!h Zr)>] - Yr
=1

= 3+ P2(T1. T2, 3r~')1,yr-!)rs£7r) + 0Tw’2(l‘1v o 25V, Y )

Let ¥, be a new estimate of 0 and define the new state 13 as
2 3

. or L 2T I . .
Iy = Cpdy + :3+’7"2(1:1»I'21~ qdl,yr»yr,yr)*ﬂ)z lU'Z(-rle2x~ ~1)1~3}r-3/r)~ C

o

Substitute (7.22) into (7.21) to obtain

Iy = —coxy + 23+ (0 = V) Twa(ry o2, 2" 0 Y ) -

Then, let the update law for the new estimate ), be

; r .
U = zpwo(T1 22, 2" V1, yes ) -

(32 + OT“n(Zl« ~"r))

(7.

—_—
-1

Step i (2 < ¢ < p—=1) Using the definitions for ry.... o, and VJy... .. J,_|. express

derivative of r, as
h— o~ A J : (1)
Ly = <S4 +Yl(rlw"'7$lv~ sl)lv'--\l)l-l*.’/rv"w!/r )
T I . -1
+0 w,»(rl,...,r..,‘.,t)l,...,z)._l,yr‘....yi' ).

Let U, be a new estimate of 8 and define the new state r,4, as

r f .
Tt = I+ S F 9T Tl 2 00 Dl Y g

aT ” o r i—=1) .
+9, wi( 1y, L0y 2 ,z)l,...,t),_l,y,,...,y£ ), o >2.

23

19)

™
P

the
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Substitute (7.26) into (7.25) to obtain

‘i‘i = =G I, + Tig1 + (0 —Ui)TU)i(‘Tla"-»Inzrsﬂls”'»0t—layr9~~-s.7/,(-z_]))' ( .

-1
(S}
-1
~

Then, let the update law for J; be

b r .« 1—1 5
l),:—‘1?,‘10,'(1‘1,.”,113,',2,1)1,...,19,_1,1/-,...,y‘(. . (7.

-1
[
[04]

Step p. Using the definitions for z,,...,z, and ¥y, ...,9,_;, express the derivative of r, as

b, = Bo(2)ud @p(Tryee oy Loy 200y Doty Uey s yt?)
+0Tw, (21, 2, 2501y D pets Yey -y (7.29)
et ¥, be a new estimate of  and define the control u as
1 3T 9 -
u:B—O(Z—)-[—cpxp—cpp—t)pw,, , Cp 2> 2. (7.30)
Substitute (7.30) into (7.29) to obtain
I, = —c,z,+ (0 — 19,,)Twp(a:1, ey Loy 2301y Doy Yy yi"_”) . (7.31)
Finally, let the update law for the estimate ¥, be
ljp =X, wp(xl, oy Tpy Zr, 01, ey L)p—lvyrv S ’yl(‘[)—l)) . (73_))

As was the case in the regulation result of Section 5, the assumptions of Proposition 7.3
guarantee that the design procedure (7.16)-(7.32) is globally feasible. The resulting closed-

loop adaptive system is given by

o= —er e+ (0-9) w2, 25 y)
Lys) = —Cp1 Ty y +arp+(()—Up_l)Tw,,_l(xl,...,J:,,_l,:',zﬂl,...,t)p_l.yr.....yﬁ""”)
r, = —-c,,.r,,+(0—17D)Twp($1,...,x,,z',ﬁl,...,ﬂp_l,y,,...,yi"‘”) (7.33)
p
o= Doly, ) 4+ D] 0,0,(y,2")
i=1
r), = I, w,(.rl,...,x,',zr,ﬂl,...,ﬂi-l,p/r,...,g/si'l)), 1<:i<p
y = I+
24




The stability and tracking properties of (7.33) will be established using the quadratic
function
Vilzy, ..,2,,74,...

Zp:[x +(0—9)T(0 -] . (7.34)

The derivative of V; along the solutions of (7.33), with ¢; > 2,1 <¢ < p, is

tol»—'

|
Mu

Vt = [C,‘.’E? + (0 — ﬂ,)T(x,‘w,‘ — 0,)} -+ i TiTit1

Il
—-

fi
'M"

p—1
I + Zx T4
=1

1

-
Il

< =Y z2<o. (7.35)

e

1

v

This proves that V is bounded. Hence z,,...,z, and 9;,...,9, are bounded. The bound-
edness of 7, and y, implies that y is bounded. Combining this with Assumption 7.5 proves
that =% 1s bounded. Therfore, the state vector of (7.33) is bounded. This fact, combined
with Assumption 7.6, implies the boundedness of z, { and u. Thus, the derivatives &;...., 1,
are bounded. Now (7.34) and (7.35) imply that V; is bounded and integrable. Moreover,
the boundedness of zy,...,z, and &,,...,%, implies that V, is bounded. Hence, V., — 0 as

t — o, which, combined with (7.35), proves that

limz;(t) =0, 1<i<p. (7.36)

t—oo
[n particular, this means that asymptotic tracking is achieved:
lim z,(t) = lim [y(¢) — y:(t)] = 0. (7.37)
t—oo t—oo
These results are summarized as:

Theorem 7.7. Under Assumptions 7.1, 7.5 and 7.6, and the strict-feedback condition (7.11).

the adaptive design procedure (7.16)-(7.32), applied to the nonlinear system (7.1), vields

global asymptotic tracking and boundedness of all the closed-loop signals. O

8 Discussion and Examples

With the help of two simple examples, we now discuss some of the main features of the new

adaptive scheme. The first example illustrates the systematic nature of the design procedure.
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while the second one compares the stability properties of the new scheme with those of the

nonlinearity-constrained scheme of [9)].

Example 8.1 (Regulation). We first consider a “benchmark” example of adaptive non-

linear regulation:

2.71 = 22+ 0212
2?2 = Z3 (81)
53 = u,

where # 1s an unknown constant parameter. This system violates both the geometric con-
ditions of the schemes proposed in [1,2,3] and the growth assumptions of [5,6,9,12]. In fact.
the only available global result for this example was obtained in [7].

The system (8.1) is already in the form of (5.4) with 8y = 1. Hence, this system satisfies
the conditions of Theorem 5.4, which guarantees that the point = = 0, ¥, = J, = v = 0
is a globally stable equilibrium of the adaptive system. Moreover, for any initial conditions

:(0) € IR3, (¥,(0),9,(0),93(0)) € IR3, the regulation of the state z(t) is achieved:

tlirg z{t) = 0. (3.2)
The design procedure of Section 4, applied to (8.1), is as follows:
Step 0. Define z; = z.
Step 1. Let ¥, be an estimate of § and define the new state z;, as
Zo =2x1+zg+01xf. (8.3)
Substitute (8.3) into (8.1) to obtain
I = =2z, + 13+ 250 - V). (8.4)
Then, let the update law for J, be
9, = 3. (8.5)
Step 2. Using (8.3) and (8.5), write i, as
g2 = 2(20 4 028) + z3 + V1221 (22 + 02F) + 3. (3.6)
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Let U5 be a new estimate of ¢, and define the new state
T3 =279 + 2(20 + 0222)(1 + V12) + 25 + 23. (8.7)
Substitute (8.7) into (8.6) to obtain
Ty = —2x9 + 73 + 223 (1 + V12,)(0 — 7). (8.8)
Then, let the update law for ¥, be
Oy = 22273(1 + V1zy). (8.9)
Step 3. Using (8.3), (8.5), (8.7) and (8.8), write &3 as

£y o= 2[~22 + 25+ 2231 + 0121)(0 — 0)] + 2 [z + 22002(2; + 02F)
+2222,2%(1 + 1913:1)] (14 013)) + 2(22 + 9,28) [a:‘} + 91(z2 + 0:12)}

+523 (22 + 02%) + u. (8.10)
Let 775 be a new estimate of #, and define the control u as

u = —2x3-2 [-—‘21:2 + I3+ 23:3(1 + 9,124)(0 — 192)] -2 [23 + 2z2,09(20 + Ozf)

+2212132$f(1 + '1911'1)] (1 + 191.7)1) - 2(22 + 192212) [33‘1‘ + 191(22 + Ozf)]

—51d (2 4 023). (8.11)
Substitute (3.11) into (8.10) to obtain
iy = 223 + [22}(1 + 20131) + 42592 + 201(22 + 0o5d)2f +525] (0—03). (3.12)
Finally, let the parameter update law for 93 be

19.3 = T3 [23}?(1 + 21911'1) + 42?02 + 201(22 + 02212)212 + 5.1,‘?] . (813)

The resulting adaptive system is
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&, = —2z;+z,+23(0 - 9,)

Ty = =2z5+z3+ 2231 + 121)(0 - 9,)

B5 = =223+ 2031+ D1z) + 4280 + 201(20 + 02272} + 528 (0 - vs)

g, = 2 (8.14)

192 = 21’21‘?(1‘{"1911‘1)
Dz = z3 [Qxf(l +U121) + 42707 + S0, (20 + V223) 23 + 52:?] .

Using the Lyapunov function

o1 3
V= 5 [zf 422+ +(0 -9+ (0—1,)2+(0— 193)2] , (8.15)
it is scraightforward to establish the above mentioned global stability properties. O

Example 8.2 (Tracking). Consider now the problem in which the output y of the nonlinear

system
él = 22 + 0212
2',’2 = U+ 23
. S.16
23 = —z3+Yy ( )
y = 21,

is required to asymptotically track the reference signal y, = 0.1sint.
For the sake of comparison, let us first solve this problem using the scheme of [9]. This

scheme employs the control
u=—z3+ k(o — o) + ka2 + 0122 — §o) + 4 — 20,2025 — 20,23, (3.17)

where 0,, 0,, the estimates of 8, 02, respectively, are obtained from the update laws:

_ i1 Ao ez
1+e+&° 1+ + e

Using a relative-degree-two stable filter M(s), the variables ey, £;, & in (8.18) are defined as

g, (8.13)

L = y"yr+w—é1£l—é2€2 (8.19)

& = M(s)[2212 + ko2] (8.20)

& = M(s)[2:])] (8.21)

w = M(s) [0y (20122 + kp2?) + 0 (2:3)] - (8.22)
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Simulations of this system were performed with

1

M) = a3ss e

0=1, ky=—-6, kg = -5, (8.23)

and all the initial conditions zero, except for z;(0), which was varied between € and 0.45.
The results of these simulations are shown in Fig. 1. The response of the closed-loop system
is bounded for z(0) sufficiently small, that is, for 2;(0) < 0.45. However, for larger z,(0),
the response is unbounded. This behavior is consistent with the proof of Theorem 3.3
in [9], which guarantees boundedness for all initial conditions only under a global Lipschitz
assumption. In the above system, the presence of the term z? leads to the violation of this
assumption.

The unbounded behavior in Fig. 1 is avoided by the new scheme, which results in a
globally stable adaptive system. This is illustrated by simulations in Fig. 2. The design
procedure of Section 7, applied to the system (8.16), results in the change of coordinates

ry = 21— U .
; 3.24
2 = 2z —y) + 22+ 0z — g, ( )

the control

U= —2z23 — 3$2 —_— 2(22 + 1922?)(1 + 1912]) - mlz‘: + 2yr + yr, ( A

oL
1~
o
—

and the update laws
0; = 127, 9y = 22,23 (1 + 9121). (8.26)

0

The above example illustrates an obvious advantage of the new scheme in the case of
strict-feedback systems: it guarantees global stability for all types of smooth nonlinearities.
[ts advantages are less obvious, but still important, in the case of pure-feedback systems.
when the feedback linearization is not global. In this case, the new scheme provides an
estimate of the region of attraction, which is not the case with the schemes of [5,9,12]. On the
other hand, the schemes of [1,6] guarantee local results and give stability region estimates for
larger classes of systems than the scheme presented in this paper. In the case of pure-feedback

systems, it would be of interest to compare the sizes of stability regions obtained with
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2, Tracking error y — y,

1.5 1
1
0.5 1
rf
0-\\
0 1 2 3 4 5

Time ¢t

Figure 1: Locally stable tracking with the adaptive scheme of [9).
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Figure 2: Globally stable tracking with the new adaptive scheme.
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different schemes. Another significant task would be to compare their robustness properties.

However, such tasks are beyond the scope of this paper.

9 Conclusions

The results of this paper have advanced in several directions our ability to control nonlinear
systems with unknown constant parameters. The most significant progress has been made
in solving the global adaptive regulation and tracking problems. The class of nonlinear
systems for which these problems can be solved systematically is now much larger than ever
before. The strict-feedback condition precisely characterizes the class of systems for which
the global results hold with any type of smooth nonlinearities. For the broader class of
systems satisfying the pure-feedback condition, the regulation and stability results may not
be global, but are guaranteed in regions for which a priori estimates are given. It is crucial
that the loss of globality, when it occurs, is not due to adaptation, but is inherited from
the deterministic part of the problem. All these results are obtained using a step-by-step
procedure which, at each step, interlaces a change of coordinates with the construction of
an update law. Apart from the geometric conditions, this paper uses simple analytical tools,

familiar to most control engineers.
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